This article explores the possibilities of forecasting water discharge in the Piskom River basin based on meteorological data using Machine Learning (ML) models. The study establishes relationships between the Piskom River flow and meteorological factors using Random Forest, XGBoost, and LSTM models, with their accuracy compared through various evaluation metrics (MAE, RMSE, R², and NSE). The analysis demonstrates that the Random Forest model provides the highest accuracy in forecasting the water discharge of the Piskom River. The research results indicate that ML models can serve as an effective tool for preliminary assessment of river flow and water resource management
Шульц В.Л., Машрапов Р. Ўрта Осиё гидрографияси. – Тошкент: Ўқитувчи, 1969. – 327 б.
Nishonov B. E., Abdurakhmanov, M. M. Evaluation of ERA5 reanalysis data with observed data in the Akhangaran River Basin // Hydrometeorology and Environmental Monitoring, 2025. №1. – PP. 28-38.
Kratzert F., Klotz D., Brenner C., Schulz K., Herrnegger M. Rainfall–runoff modelling using long short-term memory (LSTM) networks // Hydrology and Earth System Sciences, 2023. №2. – PP. 19-48.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel V., Thirion B., Grisel O., Duchesnay É. Machine Learning in Python // Journal of Machine Learning Research, 2021. №5. – PP. 23-39.
Электрон ресурслар:
UN “World Population Prospects 2022”. URL: https://www.un.org
Machine Learning Tutorial. URL: https://www.geeksforgeeks.org/machine-learning
XGBoost Tutorials. URL: https://xgboost.readthedocs.io/en/stable/tutorials/model.html
LSTM Tutorials. URL: https://scikit-learn.org/stable/modules/ensemble.html
Copyright (c) 2026 У. БАЛXИЕВ, К. ГОФУРЖОНОВ, Д. ТУРГУНОВ (Автор)

This work is licensed under a Creative Commons Attribution 4.0 International License.
You may also start an advanced similarity search for this article.